Skip to main navigation menu Skip to main content Skip to site footer

COMPARATIVE PERFORMANCE ANALYSIS BETWEEN MYSQL AND MONGODB DATA STORAGE ENGINES TO SUPPORT DYNAMIC CONTENT OBJECTS

ANÁLISIS COMPARATIVO DEL RENDIMIENTO DE LOS MOTORES DE ALMACENAMIENTO DE DATOS MYSQL Y MONGODB PARA EL SOPORTE DE OBJETOS CON CONTENIDOS DINÁMICOS.




Section
Artículos

How to Cite
[1]
R. Calderón Moreno, . E. D. Rubiano Bacca, and L. A. Parra Linares, “COMPARATIVE PERFORMANCE ANALYSIS BETWEEN MYSQL AND MONGODB DATA STORAGE ENGINES TO SUPPORT DYNAMIC CONTENT OBJECTS”, Rev. Ing. Mat. Cienc. Inf, vol. 11, no. 22, Jul. 2024, doi: 10.21017/rimci.1093.

Dimensions
PlumX
license
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

 

Esta obra está bajo una licencia internacional

Atribución/Reconocimiento 4.0 Internacional

Comparative performance analyses enable users to take informed decisions on technologies beyond current market trends and/or commercial information from vendors. In this paper we present a comparative performance analysis between MySQL and MongoDB, based on data from the Dynamic Survey Manager at the Planes de Energización Rural Sostenible, Región Orinoquía project. First, we proposed a document-based data storage model to support the current relational model. This model allows a flexible structure and storage of information for the organization in future. Then, we configured the document-based model on MongoDB. Subsequently, we measured and compared performance times by using selected test scenarios. Finally, we found MongoDB has at least 40% better response times, in addition to the flexibility in the information structure and storage with respect to MySQL. MongoDB’s flexibility allows software developers to skip the object relational mapping within their data persistence layer, while supporting ACID-type transactions (Atomicity, Consistency, Isolation, Durability). Despite the positive results, we found a test scenario where MySQL outperformed MongoDB. For queries involving larger objects (e.g., > 100MB), MongoDB was 7.5% slower than its counterpart.


Article visits 34 | PDF visits 15


Downloads

Download data is not yet available.
  1. Observatorio del Territorio, Planes de energización rural sostenible. 2019. http://observatorio.unillanos.edu.co/pers/.
  2. R. Calderón-Moreno & D. Arenas-Seleey, Mapeo de objetos a través de un motor de datos NOSQL, caso de estudio: framework para desarrollo de aplicaciones web, Ingeniería Investigación Y Desarrollo, págs. 61-71. 2017.
  3. S. Roger, Ingeniería de Software un enfoque práctico. Pressman, Mexico DF: McGraw Hill, 2006. p. 6-16.
  4. M. Callejas Cuervo, D. I. Peñalosa Parra y A. C. Alarcón Aldana, Evaluación y análisis de rendimiento de los frameworks de persistencia Hibernate y Eclipselink. Manizales: 2011, Ventana Informatica, Vol. 24, págs. 9-23.
  5. M. Fowler, Martin y Sadalage, J. Pramodkumar, NoSQL Distilled, A Brief Guide to the Emerging World of Polyglote. s.l: Addison Wesley, 2013.
  6. MongoDB-Inc. Definition. db.collection.aggregate(pipeline, options). 2018. https://docs.mongodb.com/manual/reference/method/db.collection.aggregate/index.html.
  7. Solid IT. DB-Engines Ranking of Document Stores. Document Stores. 2019. https://db-engines.com/en/ranking/document+store.
  8. A Comparative Study: MongoDB vs MySQL. Soni, Sushil y Ambavane, Mayuresh. 2017, International Journal of Scientific & Engineering Research, Vol. 8, págs. 120-123.
  9. A Comparative Study: MongoDB vs. MySQL, Proceedings of the International Conference on Information Technologies. OLAH, Andrada. Bulgaria: 2018, Proceedings of the International Conference on Information Technologies (InfoTech-2018), p. 20-21.
  10. Comparative analysis of NoSQL (MongoDB) with MySQL Database. Kumar, Lokesh. 2015, International Journal of modern Trends in Engineering and Research ISSN(Online) 2349-9745. 2015.
  11. F. Arboleda, F.J. Moreno, Una comparación de rendimiento entre ORACLE y MONGODB. 1, 2016, Ciencia e Ingeniería Neogranadina, Vol. 26, págs. 109-129.
  12. R. Sánchez-de-Madariaga, A. Muñoz, A. L. Castro, O. Moreno & M. Pascual, Executing Complexity-Increasing Queries in Relational (MySQL) and NoSQL (MongoDB and EXist) Size-Growing ISO/EN 13606 Standardized EHR Databases. 2018. 133, 19 de 03 de 2018, Journal of visualized experiments: JoVE doi:10.3791/57439.
  13. Oracle. Reference Manual. What is MySQL?. 2017. https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html.
  14. Supported Storage Engines. Alternative Storage Engines. 2017. https://dev.mysql.com/doc/refman/5.5/en/storage-engines.html.
  15. MongoDB-Inc. Documentation. Introduction to MongoDB. 2017. https://docs.mongodb.com/manual/introduction/.
  16. JSON and BSON. 2017. https://www.mongodb.com/json-and-bson?lang=es-es.
  17. Visión de Conjunto. Comparación entre MongoDB y MySQL. 2017. https://www.mongodb.com/compare/mongodb-mysql?lang=es-es.
  18. A Comparative Study Between the Capabilities of MySQl Vs. MongoDB as a Back-End for an Online Platform. Cornelia Győrödi y Ioana Andrada Olah. 2016, International Journal of Advanced Computer Science and Applications, págs. 73-78.
  19. M. M. Patil, A. Hanni, C. H. Tejeshwar and P. Patil, A qualitative analysis of the performance of MongoDB vs MySQL database based on insertion and retriewal operations using a web/android application to explore load balancing — Sharding in MongoDB and its advantages. 2017. International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) doi: 10.1109/I-SMAC.2017.8058365, p. 325-330.
  20. M. Fowler y P. Sadalage, NoSQL Distilled, A Brief Guide to the Emerging World of Polyglote, Addison Wesley, 2013.
  21. Y. Abrahami, Scaling to 100M: MySQL is a Better NoSQL. 2018. https://www.wix.engineering/blog/scaling-to-100m-mysql-is-a-better-nosql.
Sistema OJS 3.4.0.5 - Metabiblioteca |