Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

ANÁLISIS DE LA PRESIÓN FACIAL GENERADA POR LAS MASCARILLAS DE USO COTIDIANO UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS

Analysis of facial pressure generated by everyday masks using the finite element method



Abrir | Descargar


Sección
Artículos

Cómo citar
[1]
W. Cruz Guayacundo and D. Peñarete, “ANÁLISIS DE LA PRESIÓN FACIAL GENERADA POR LAS MASCARILLAS DE USO COTIDIANO UTILIZANDO EL MÉTODO DE ELEMENTOS FINITOS”, Rev. Ing. Mat. Cienc. Inf, vol. 9, no. 17, pp. 13–20, Jan. 2022, Accessed: Dec. 26, 2024. [Online]. Available: https://ojs.urepublicana.edu.co/index.php/ingenieria/article/view/787

doi
Dimensions
PlumX
Licencia

 

Esta obra está bajo una licencia internacional

Atribución/Reconocimiento 4.0 Internacional

Wilmer Cruz Guayacundo,

Magister en ingeniería Mecánica. Profesor tiempo completo. Universitaria Agustiniana. Facultad de Ingeniería.


Daniel Peñarete,

Magister en instrumentación y automatización. Profesor tiempo completo. Universitaria Agustiniana. Facultad de Ingeniería.


En el presente trabajo se formula un modelo basado en el método de los elementos finitos, con el propósito de medir la presión facial generada por las mascarillas de uso cotidiano. El análisis incluye la determinación computacional de la presión generada por la mascarilla sobre dos formas de cabeza que contemplan las dimensiones antropométricas de la población colombiana entre 20 y 59 años, una representa el sexo masculino y la otra el sexo femenino. El modelo de la cabeza se divide en cinco partes (dos mejillas, la frente, el mentón y posterior de la cabeza), algunas de ellas contemplan capas de piel, musculo, tejido graso y hueso, acorde a la anatomía de la cabeza humana. La mascarilla está compuesta por tres capas de materiales diferentes, un clip metálico y dos bandas elásticas que permiten ajustar la mascarilla a la cara. El proceso de simulación consiste en colocar la mascarilla totalmente centrada a la cara y estirar las bandas elásticas hasta ubicarlas en la parte posterior de las orejas, de esta forma se genera el contacto facial entre mascarilla y cabeza. Los resultados obtenidos indican que los valores máximos de presión se encuentran concentrados en cinco puntos específicos de la cabeza.

DOI: http://dx.doi.org/10.21017/rimci.2022.v9.n17.a107


Visitas del artículo 863 | Visitas PDF 701


Descargas

Los datos de descarga todavía no están disponibles.
  1. Organización Mundial de la Salud. Nuevo coro- navirus 2019.[Online]. Disponible: https:// www.who.int
  2. Ministerio de Salud de Colombia, “Informe de se- guridad”, Ministerio de Salud de Colombia, Bogo- tá, 2020.
  3. Revista Dinero, “3M anuncia la ampliación de sus plantas de tapabocas”, Revista Dinero, abril 2020.
  4. A. Gefen, P. Alves, G. Ciprandi et al. Device related pressure ulcers: SECURE prevention. J Wound Care; 29 (Sup2a): S1–S52 https:// doi.org/10.12968/jowc.2020.29.Sup2a.S. 2020.
  5. R. Montero. Los daños del uso de las mascarillas con el calor: erosiones, alergias y acné.[Online]. Disponible: https://www.niusdiario.es. 2020.
  6. L. Edsberg, J. Black, M. Goldberg, L. McNichol, L. Moore & M. Sieggreen, “Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System” J Wound Ostomy Continence Nurs. Nov/Dec; 43(6): 585-597. 2016.
  7. D. Piccione, M. Junior & K. Cohen, “Modeling the Interface between a Respirator and the Human Face”, Maryland: Army Research Laboratory, vol. 1, pp. 52, March 1997.
  8. J. Yang, J. Dai & Z. Zhang, “Simulating the Interaction between a Respirator and a Headform Using LS-DYNA”, Computer-Aided Design & Applications, vol. 6, pp. 539-551, 2009.
  9. Z. Zhuang, and D. Viscusi, «A New Approach to Developing Digital 3-D Headforms», SAE Tech- nical Paper, 2008-01-1878, 2, https://doi.org/ 10.4271/2008-01-1878. 2008.
  10. J. Dai, j. Yang & Z. Zhuang, “Sensitivity Analysis of Important Parameters Affecting Contact Pressure between a Respirator and a Headform”, Interna- tional Journal of Industrial Ergonomics, vol. 41, pp. 268-279, 2011.
  11. Z. Zhuang, S. Benson & D. Viscusi, “Digital 3-D headforms with facial features representative of the current US workforce”, Ergonomics, vol. 53, pp. 661-671, 2010.
  12. Z. Lei, J. Yang & Z. Zhuang, “Contact Pressure of N95 Filtering Face-Piece Respirators Using Finite Element Method”, Computer Aided Design and Applications, vol. 7, pp. 847-861, 2010.
  13. D. Hidson, “Computer-aided Design of a Respi- rator Facepiece Model”, Ottawa: Defense Research Establishment Ottawa, pp. 67, Dec 1984.
  14. D. Dellweg, D. Hochrainer, M. Klauke, J. Kerl, G. Eiger, & D. Kohler, “Determinants of Skin Contact Pressure Formation during Non-invasive Venti- lation”, Journal of Biomechanics, vol. 43, pp. 652- 657, 2010.
  15. National Institute for Occupational Safety and Health. Friess M. Analysis of 3d Data for the Improvement of Respirator Seals. Anthrotech; Yellow Springs, Ohio: 2004.
  16. H. Krishnamurthy & D. Sen, “Deriving Statistical Fit Contours and Shape of an Aerosol Mask from 3D Head Scans”, International Journal of Human Factors Modeling and Simulation, vol. 2, pp. 293- 313, Jan 2011.
  17. R. Roberge, G. Niezgoda & S. Benson, “Analysis of Forces Generated by N95 Filtering Facepiece Respirator Tethering Devices: A Pilot Study”, Journal of Occupational and Environmental Hygiene, vol. 9, pp. 517-523, 2012.
  18. G. Niezgoda, J. Kim, R. Roberge & S. Benson, “Flat fold and cup-shaped N95 filtering facepiece respirator face seal area and pressure determi- nations: a stereophotogrammetry study”, Journal of Occupational and Environmental Hygiene, vol. 10, pp. 419-424, 2013.
  19. A. Badri, “Surgical mask contact dermatitis and epidemiology of contact dermatitis in healthcare workers”, Current Allergy & Clinical Immunology, vol. 30, pp. 183-188, sep 2017.
  20. R. Ávila, L. Prado y E. González, “Dimensiones antropométricas de población latinoamericana”, Universidad de Guadalajara, Centro Universita- rio de Arte, Arquitectura y Diseño, 2007.
  21. E. Keeve, S. Girod, R. Kikinis, and B. Girod “Defor- mable Modeling of facial tissue for craniofacial surgery simulation”, Comput official journal of the International Society for Computer Aided Surgery, vol 3, pp. 228–238, 1998.
  22. A. Hung, K. Mithraratne, M. Sagar, and P. Hunter, “Multilayer soft tissue continuum model: Towards realistic simulation of facial expressions”, Procee- dings World Academy of Science Engineering and Technology, vol. 54, pp. 134–138, 2009.
  23. Icontec, “Mascarillas (tapabocas) para uso en am- bientes diferentes al sector salud”, END 150:2020, mayo, 05, 2020.
  24. Minsalud. Lineamientos mínimos para la fabri- cación de tapabocas y otros insumos en el marco de la emergencia sanitaria por enfermedad COVID-19 (Guía 1).[online]. Disponible: https: //www.minsalud.gov.co. 2020.
  25. G. Leyva, “Mask, a resource to guarantee the security of the personnel of health and the patient”, Revista Enfermería Universitaria ENEO-UNAM, vol. 6, pp. 37-40, Julio 2009.
  26. W. Cruz, “Modelado por elementos finitos y vali- dación experimental de las vibraciones generadas por un eje asimétrico con desbalance másico”, Te- sis de Maestría, Facultad de Ingeniería, Universi- dad Nacional de Colombia, Bogotá, 2015.
  27. Y.Takema,Y.Yorimoto,M.Kawai,andG.Imokava, “Age-related changes in the elastic properties and thickness of human facial skin”, The British journal of dermatology, vol. 131, pp. 641–648, 1994.
  28. S. De Greef, P. Claes, D. Vandermeulen, W. Mollemans, P. Suetens, and G. Willems, “Large- scale in-vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction”. Forensic Sci. Int. vol. 159, pp. 126–146, 2006.
  29. F. Beer, E. Russel, J. DeWolf and D. Mazurek, Mecá- nica de materiales, Quinta Edición. México: McGraw-Hill, 2010.
  30. C. Harper, Modern Plastic Handbook. Edition 1. New York, USA: The McGraw-Hill Companies, 2000.
  31. E. Gladilin, “Biomechanical Modeling of Soft Tissue and Facial Expressions for Craniofacial Surgery Planning.”, Ph.D. diss., Department of Mathematics and Computer Science, Free Univer- sity Berlin, Berlin, Germany , 2002.
  32. Y. Fung, Biomechanics—Mechanical Properties of Living Tissues. 2nd ed. New York: Springer-Verlag, 1993.
  33. F. Duck, Physical Properties of Tissues: A Com- prehensive Reference Book. London: Academic Press, 1991.
  34. D. Bader, P. Worsley, A. Gefen, “Bioengineering considerations in the prevention of medical device- related pressure ulcers”, Clin Biomech (Bristol, Avon), vol. 67, pp. 70-77, 2019. doi: 10.1016/ j.clinbiomech.2019.04.018.
Sistema OJS 3.4.0.5 - Metabiblioteca |