Skip to main navigation menu Skip to main content Skip to site footer

Supervised algorithms for application bandwidth prediction on Amazon Web Service from a rural SME

ALGORITMOS SUPERVISADOS PARA LA PREDICCIÓN DEL ANCHO DE BANDA DE LAS APLICACIONES EN AMAZON WEB SERVICE DESDE UNA PYME RURAL




Section
Artículos

How to Cite
[1]
R. Osorio Diaz, M. Y. Segura Ruiz, and M. Alonso Villalba, “Supervised algorithms for application bandwidth prediction on Amazon Web Service from a rural SME”, Rev. Ing. Mat. Cienc. Inf, vol. 10, no. 20, pp. 27–38, Jul. 2023, Accessed: Dec. 22, 2024. [Online]. Available: https://ojs.urepublicana.edu.co/index.php/ingenieria/article/view/930

doi
Dimensions
PlumX
license

 

Esta obra está bajo una licencia internacional

Atribución/Reconocimiento 4.0 Internacional

Ramiro Osorio Diaz,

Magister en telecomunicaciones móviles. Especialista en Redes de Alta Velocidad y Distribuidas. Ingeniero Civil. Docente Facultad de Ingeniería, Uniagustiniana.


Martha Yaneth Segura Ruiz,

Magister en administración y dirección de empresas. Especialista en Diseño y Construcción de Soluciones Telemáticas. Especialista en Ingeniería de Software. Ingeniera de Sistemas. Docente Facultad de Ingeniería, Uniagustiniana.


Mauricio Alonso Villalba,

Especialista en Docencia y Pedagogía Universitaria. Ingeniero de Sistemas. Docente Facultad de Ingeniería, Uniagustiniana.


This article presents a methodology to measure the bandwidth behaviour by making predictions of the network traffic that connects to the cloud in small and medium enterprises in rural areas with difficult access in Colombia, in order to optimize network resources over time and ensure the quality of service in web applications. A comparative study of three neural network algorithms that model a multilayer neural network is performed, selecting the one that has a minimum error that approaches zero; the selected algorithm is trained from a data source to predict the network traffic that connects to the cloud.

It is necessary to analyse network behaviour to ensure the quality of web applications in the cloud that transmit information such as data, images, sound, video, etc., some in real time, and that generate large volumes of traffic. Understanding the traffic flowing through the network enables network capacity planning when managing limited resources, such as in the case of small and medium-sized enterprises in rural areas. As a product of the research analysis, a free software prototype will be developed to perform the measurements and predictions in rural areas. The results of the implementation show that the proposed approach is superior to other forecasting methods in terms of accuracy and predictability.

DOI: http://dx.doi.org/10.21017/rimci.2023.v10.n20.a138


Article visits 101 | PDF visits 74


Downloads

Download data is not yet available.
  1. McCluskey, P., «Feedforward and recurrent neural networks and genetic programs for stock market and time series forecasting», Master of Science, Brown University. (1993).
  2. Piedra, N., Chicaiza J., López J. and Garcia, J. «Study of the Application of Neural Networks in Internet Traffic Engineering», Hdl.handle.net, [Online]. Available: http://hdl.handle.net/10525/1028. (2008).
  3. Colombia alcanzó 7,67 millones de conexiones fijas en el tercer trimestre de 2020. (n.d.). Retrieved May 6, 2023, from https://www. larepublica.co/economia/colombia-alcanzo-767-millones-deconexiones-fijas-en-el-tercer-trimestrede-2020-3120559.
  4. Z. De and D. Acceso, “PROMOCIÓN DE LA CONECTIVIDAD A INTERNET FIJO EN Página 2 de 81 PROMOCIÓN DE LA CONECTIVIDAD A INTERNET FIJO EN ZONAS DE DIFICIL ACCESO.
  5. Sahrani, M. N., Zan, M. M. M., Yassin, I. M., Zabidi, A., & Ali, M. S. A. M. (2017). Artificial Neural Network non-linear auto regressive moving average (NARMA) model for internet traffic prediction. Journal of Telecommunication, Electronic and Computer Engineering, 9(1–3), 145–149.Sancho, F. (23 de abril de 2017). Entrenamiento de Redes Neuronales: mejorando el Gradiente Descendiente [Entrada de Blog]. Recuperado de: http://www.cs.us.es/~fsancho/?e=165.
  6. Mena-Oreja, J., & Gozalvez, J. (2017). Predicción de la Velocidad del Tráfico Basada en Redes Neuronales Convolucionales.
  7. Yadegaridehkordi, E., Nizam Bin Md Nasir, M. H., Fazmidar Binti Mohd Noor, N., Shuib, L., & Badie, N. (2018). Predicting the adoption of cloud-based technology using fuzzy analytic hierarchy process and structural equation modelling approaches. Applied Soft Computing, 66, 77–89. https://doi.org/10.1016/J.ASOC.2017.12.051.
  8. Taylor, S. J. E., Kiss, T., Anagnostou, A., Terstyanszky, G., Kacsuk, P., Costes, J., & Fantini, N. (2018). The CloudSME simulation platform and its applications: A generic multi-cloud platform for developing and executing commercial cloud-based simulations. Future Generation Computer Systems, 88, 524–539. https://doi.org/10.1016/j.future. 2018.06.006
  9. Abdullah, S. A., & Al-Ashoor, A. (2020). An artificial deep neural network for the binary classification of network traffic. International Journal of Advanced Computer Science and Applications, 11(1), 402-408.
  10. Aibin, M. (2018). Traffic prediction based on machine learning for elastic optical networks. Optical Switching and Networking, 30, 33–39. https://doi.org/10.1016/j.osn.2018.06.001
  11. Nanda, S., & Hacker, T. J. (2017). TAG: Traffic-Aware Global Live Migration to Enhance User Experience of Cloud Applications. In 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 202–209). IEEE. https://doi.org/10.1109/CloudCom.2017.13
  12. Desarrollo e innovación en ingeniería [recurso electrónico]/ Edgar Serna M., ed. — 4a. ed. — Medellín: Instituto Antioqueño de Investigación, Pag 27-36— (Ingeniería y ciencia), DOI: http://doi.org/10.5281/zenodo.3387679. (2019)
  13. Calvo,D.<https://www.diegocalvo.es/definicionde-red-neuronal/> [Artículo publicado el 12 de Julio de 2017]
  14. < http://neupy.com/pages/home.html/>
  15. <https://platzi.com/blog/librerias-de-machinelearning-tensorflow-scikit-learnpythorch-y-keras/>[Artículo publicado en 2018].
  16. <https://aprendeia.com/introduccion-a-numpypython-1/> [Artículo publicado el 21de septiembre de 2018].
Sistema OJS 3.4.0.5 - Metabiblioteca |