Skip to main navigation menu Skip to main content Skip to site footer

An application of the probit model on the neighborhood effect in educational environments

UNA APLICACIÓN DEL MODELO PROBIT SOBRE EL EFECTO VECINDARIO EN ENTORNOS EDUCATIVOS




Section
Artículos

How to Cite
[1]
C. Benavides Parra, “An application of the probit model on the neighborhood effect in educational environments”, Rev. Ing. Mat. Cienc. Inf, vol. 10, no. 20, pp. 13–25, Jul. 2023, Accessed: Dec. 22, 2024. [Online]. Available: https://ojs.urepublicana.edu.co/index.php/ingenieria/article/view/929

doi
Dimensions
PlumX
license

 

Esta obra está bajo una licencia internacional

Atribución/Reconocimiento 4.0 Internacional
Charli Benavides Parra


    Charli Benavides Parra,

    Matemático de la Universidad Distrital Francisco José de Caldas, de Bogotá, Colombia. Magister en Big Data & Data Science de la Universidad Internacional de Valencia, España. Especialista en Actuaría y Finanzas de la Universidad Antonio Nariño, de Bogotá, Colombia. Es estudiante de la especialización en Gerencia de Instituciones Educativas de la Corporación Universitaria Republicana, de Bogotá, Colombia. Actualmente se desempeña como profesor en educación media IB.


    Being able to rely on statistical analysis methods that allow describing and predicting results in the educational field under technological support has become a necessity at all levels, from primary to higher education, since it allows identifying shortcomings and opportunities in a local or general area, such as dropout, repetition, and student advancement or failure. That is why it is intended in this article to observe and study the multiple variables that could be related to the performance of students in educational centers, considering the quality of the neighborhood in the first instance. Estimating a spatial model of house prices to characterize which micro-neighborhoods the homes of the students are exposed to. The quality of the neighborhood will be used as an important explanatory variable to analyze the probability of influence on the performance of the students of the educational centers, in which it is intended to use geographic location data to apply spatial econometrics models. The objective is that this methodology can be used in different academic environments, for example, in higher education classrooms where more variability is perceived in the distribution of student residences.

    DOI: http://dx.doi.org/10.21017/rimci.2023.v10.n20.a136


    Article visits 119 | PDF visits 89


    Downloads

    Download data is not yet available.
    1. Chetty, R. and Hendren, N. «The Impacts of Neighborhoods on Intergenerational Mobility: Childhood Exposure Effects and County-Level Estimate», Harvard University. 2015.
    2. Checchi, «D. The economics of education: Human capital, family background and inequality», Cambridge University Press. 2006.
    3. Pérez Ramírez, C. «Efectos de vecindario como determinantes de la deserción estudiantil y el logro académico», Universidad del Valle. 2012.
    4. Galster y Santiago, A. M, «What’s the’hood got to do with it? Parental perceptions about how neighborhood mechanisms affect their children», Journal of urban affairs, pp. 201 – 226. 2006.
    5. Bracco L. «Efecto vecindario en el desempeño educativo», Montevideo-Uruguay. 2019.
    6. Precios m2. Metrocuadrado. https://www.metrocuadrado.com/noticias/herramientas/preciosm2/.
    7. Dubin, R. A. «Spatial autocorrelation and neighborhood quality», Regional science and urban economics, pp. 433 – 452. 1992.
    Sistema OJS 3.4.0.5 - Metabiblioteca |