Opuscle on the solution of the equation of third degree
OPUSCULO SOBRE LA SOLUCIÓN DE LA ECUACIÓN CÚBICA
Show authors biography
In the theory of equations, the solution of the equation of third degree (cubic) occupies a prominent place in the history of mathematics. Notable mathematicians made important contributions to complete that theory, which was not exempt from serious personal conflicts regarding the adjudication of the formulas that allowed to determine its solution. This article shows a detailed analysis in reference to the third-degree equation, both historical and analytical.
Article visits 1059 | PDF visits 1076
Downloads
- Herbert Hawkes, Higher Algebra, Ginn and Company, New York, 1913.
- Raymond Brink, Algebra College Course, Appleton Century Company, New York, 1934.
- K, Ribnikov, Historia de las Matemáticas, Moscú, MIR, 1980.
- Florian Cajori, A history of Mathematics,, The Macmillan Company, 1909. New York
- J.H. Hotmann, Historia de las Matemáticas, México, LIMUSA, 2002.
- H.S.Hall and S.R. Knigth, Algebra Superior, México, UTEHA, 1948.
- Julio Rey Pastor, Elementos de Análisis Algebraico, Buenos Aires, Ed. Kapelusz, 1939.
- Pablo Miquel Merino, Elementos de Algebra Superior, La Habana, CULTURAL S.A. 1940.
- Gerhard Hessenberg, Trigonometría Plana y Esférica, Barcelona, Ed. Labor, 1929.
- Richart Courant, Herbert Robbins, Qué es la matemática?, Madrid, AGUILAR, 1955.
- C. Mata Rodriguez, Solución como función lineal aproximada en un reducido intervalo de ecuaciones diferenciales de primer orden con fundamento en el problema de cauchy, RIMCI, vol. 5, n.º 10, pp. 33-37, jul. 2018.
- C. M. Mata rodríguez, «El método de Newton-Raphson para la obtención de raíces de ecuaciones mediante programación en MATHCAD. Algoritmo de cálculo», RIMCI, vol. 4, n.º 7, ene. 2017.
- MATHCAD, version 14.0.0.163. 2007 Parametric Technology Corporation.