https:/ /creativecommons.org/licenses/by/4.0/

COMPARATIVE PERFORMANCE ANALYSIS
BETWEEN MYSQL AND MONGODB DATA
STORAGE ENGINES TO SUPPORT
DYNAMIC CONTENT OBJECTS

Anadlisis comparativo del rendimiento entre los motores
de almacenamiento de datos MYSQL y MONGODB
para soportar objetos de contenido dinamico

ROGER CALDERON MORENO!, EDWIN DAVID RUBIANO BACCA2, LUIS ALBERTO PARRA LINARES3

Recibido: 2 de junio de 2024 Aceptado: 5 de julio de 2024
DOI: https://doi.org/10.21017/rimci. 1093

ABSTRACT

Comparative performance analyses enable users to take informed decisions on technologies beyond current market
trends and/or commercial information from vendors. In this paper we present a comparative performance analysis
between MySQL and MongoDB, based on data from the Dynamic Survey Manager at the Planes de Energizacién Rural
Sostenible, Regién Orinoquia project. First, we proposed a document-based data storage model to support the current
relational model. This model allows a flexible structure and storage of information for the organization in future. Then,
we configured the document-based model on MongoDB. Subsequently, we measured and compared performance times
by using selected test scenarios. Finally, we found MongoDB has at least 40% better response times, in addition to the
flexibility in the information structure and storage with respect to MySQL. MongoDB’s flexibility allows software developers
to skip the object relational mapping within their data persistence layer, while supporting ACID-type transactions (Atomicity,
Consistency, Isolation, Durability). Despite the positive results, we found a test scenario where MySQL outperformed
MongoDB. For queries involving larger objects (e.g., > 100MB), MongoDB was 7.5% slower than its counterpart.

Key words: MongoDB; MySQL; BSON; JSON; performance analysis.

RESUMEN

Los andlisis comparativos de desempefo permiten a los usuarios tomar decisiones informadas sobre tecnologias mds alla
de las tfendencias actuales del mercado y/o la informacién comercial de los proveedores. En este articulo presentamos un
andlisis comparativo de desempefio entre MySQL y MongoDB, basado en datos del Dynamic Survey Manager en el
proyecto Planes de Energizacion Rural Sostenible, Region Orinoquia. Primero, propusimos un modelo de almacenamiento
de datos basado en documentos para soportar el modelo relacional actual. Este modelo permite una estructura y almace-
namiento flexible de informacién para la organizacién en el futuro. Luego, configuramos el modelo basado en documentos
en MongoDB. Posteriormente, medimos y comparamos los tiempos de desempefio utilizando escenarios de prueba
seleccionados. Finalmente, encontramos que MongoDB tiene al menos un 40% mejores tiempos de respuesta, ademds de
la flexibilidad en la estructura y almacenamiento de informacién con respecto a MySQL. La flexibilidad de MongoDB
permite a los desarrolladores de software omitir el mapeo relacional de objetos dentro de su capa de persistencia de datos,
al mismo tiempo que admite transacciones de tipo ACID (atomicidad, consistencia, aislamiento, durabilidad). A pesar de
los resultados positivos, encontramos un escenario de prueba donde MySQL superé a MongoDB. En el caso de consultas
que involucran objetos mds grandes (p. ej., > 100 MB), MongoDB fue un 7,5 % mds lento que su contraparte.

Palabras clave: MongoDB, MySQL, BSON, JSON, andlisis de rendimiento.

1 Ingeniero de Sistemas, Especialista en Ingenieria de Software, Magister en Software Libre. Profesor Asistente Facultad de Ciencias Basicas e
Ingenieria, Universidad de los Llanos. Facultad de Ciencias Bésicas e Ingenieria, Universidad de los Llanos. Villavicencio, Colombia.

ORCID: https://orcid.org/0000-0001-5923-8601 Correo electrénico: rcalderonmoreno@unillanos.edu.co

2 Facultad de Ciencias Basicas e Ingenieria, Universidad de los Llanos. Villavicencio, Colombia. ORCID: https://orcid.org/0009-0000-0713-
0578 Correo electrénico: edwin.rubiano@unillanos.edu.co

3 Facultad de Ciencias Bésicas e Ingenieria, Universidad de los Llanos. Villavicencio, Colombia. ORCID: https://orcid.org/0000-0003-1146-

1841 Correo electronico: luis.parra.linares@unillanos.edu.co

Rev. Ingenieria, Matemdticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

164 |

I. INTRODUCTION

IN THE frame of the research project Planes de
Energizacion Rural Sostenible, Region Orinoquia[1], the
Observatory of the Territory of the University of
the Llanos generated an information system called
Dynamic Survey Manager to collect information
through complex surveys on its structure and size,
which can change over time without affecting the
data already collected. Analysts designed 32
survey forms, which were applied by users in the
departments of Arauca, Casanare, Meta and
Vichada through a mobile application that allowed
them to send data to the server and update their
survey forms without having to make additional
software installations. To store the information
during the first phase of project execution, the
Dynamic Survey Manager used MySQL as storage
manager, where 5929 surveys with an approximate
total weight of 1.0 GB were stored. In addition,
we evidenced that to store information in MySQL
it was necessary to condition the way in which the
information is treated on the side of the client
application. Traditionally tables represents this
information as the disaggregation of composite
objects[2], in addition to the validations and
integrity rules imposed in the relational model; the
information transformation occurs through
traditional coding or with the support of the Object
Relational Mapping (ORM).

One of the requirements of the Dynamic Survey
Manager asked for time variable information
structure, in terms of data types and organization.
This requirement involved more complex designs
— one could say, a small version control system
for the relational data model. In addition, to support
the changes that occurred when adding new data
types it was introduced data redundancy, all of
the above without losing the functionalities
implemented already. These situations represent
a potential risk in the software development
process as suggested by[3]. Another difficulty was
the latency for the delivery of queries, degrading
the performance of the applications to generate the
reports and causing dissatisfaction among the user
community/[4].

The situations previously expressed in the
implementation of the Dynamic Survey Manager in
the first phase of the project, allowed to raise the
need to look for an alternative to store the

REVISTA INGENIERIA, MATEMATICAS Y CIENCIAS DE LA INFORMACION

information, for which a document-oriented
NoSQL type database was proposed[5], specifically
MongoDBJ6], since when reviewing the ranking
of documentary type databases it is observed that
it has great acceptance and remains the most po-
pular[7]. To evaluate the performance of the
current and new database engine, we proposed
multiple scenarios to measure the response time
of each one. Reviewing related studies, we found
several documents aiming to define some kind of
performance comparison between the MySQL and
MongoDB. These studies highlight different
scenarios, for example some scenarios are based
on the sending of data through local media or
through the Internet, others focus on insertion
operations only and data query, and those that
verify all basic CRUD-type (Create, Read, Update,
and Delete) operations. Besides of the executed
operations, other studies repeat several times the
measurement process to obtain better results[8]-[11].
In addition, other studies make use of different
data types, however it is not evident the data size,
which suggests that data is about few bytes. In
another study[12] researchers compared the
response times between MySQL and MongoDB,
using standardized electronic health records with
medical information. These records support the
ISO/EN 13606 standard and included scenarios of
5000, 10000 and 20000 records.

Despite the abundance of related research we
set apart by focusing on dynamic content objects
execution and query rather than the computational
complexity of querying relational and non-
relational records. Also and for the proposed
testing process, we define the size of the infor-
mation contained by the objects that store
information as a critical design factor. It is intended
that the performance comparison from this study
support the case for the technology migration of
the Dynamic Survey Manager.

II. METHODOLOGY
2.1 Storage Engines
2.1.1 MySQL
MySQL is an open-source relational database

manager released under General Public License
(GPL), which is developed, distributed and

Rev. Ingenieria, Matemiticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

COMPARATIVE PERFORMANCE ANALYSIS BETWEEN MYSAL AND MONGODB DATA STORAGE ENGINES TO... 165
ROGER CALDERON MORENQ, EDWIN DAVID RUBIANO BACCA, LUIS ALBERTO PARRA LINARES

supported by Oracle Corporation. The structure
definition that organizes the information and its
respective storage is done through tables or
entities that are composed by rows or tuples. In
addition, fields form these entities with support
for different data types[13]. MySQL works under
different storage mechanisms such as: InnoDB,
MyISAM, Memory, Federated, Merge and
Archivie[14].

For the development of the Dynamic Survey
Manager, they used the InnoDB storage mechanism
from its inception. InnoDB allows applying
relationships between tables and defining integrity
restrictions. Also this mechanism supports the
execution of ACID-type transactions. In addition,
MySQL'’s SQL standard supports the information
query language, the data manipulation language
(DML) and the data definition language (DDL).

2.1.2 MongoDB

MongoDB is a document-oriented, open-source,
cross-platform NoSQL database manager, released
under GNU AGPL v3.0 license. It is distributed and
owned by MongoDB Inc[15]. MongoDB organizes
information through the definition of documents
that may have a variable structure in their content.
The structure of the documents is like JSON-type
documents; MongoDB stores data as documents
in a binary representation called BSON (Binary
JSON), which extends the JSON model by genera-
ting additional data types, sorting fields and
improving the coding and decoding of data for
various programming languages ??[16]. Grouping
information under a dynamic schema in JSON
format allows software developers to generate
schema relationships based on the objects defined
in the class models and the application objects. In
this way, developers send complete composite
objects to storage and later query, without the need
to disaggregate the information.

In contrast, relational databases lack this feature.
Using MongoDB removes the complex layer of the
ORM that translates objects from code into
relational tables.

At present, there is a need to manage massive
flows of data in a variety of formats: structured,
semi-structured and polymorphic. Web, mobile,
social and Internet applications produce data and

Rev. Ingenieria, Matemdticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

provide the perfect venue to transform data into
knowledge by developing software applications.
MongoDB document data model is naturally
assigned to the objects in the application’s source
code, which simplifies its learning and use for
developers. In addition, MongoDB supports
ACID-type transactions since version 4.0[17].

2.2.Test Scenario Definition

In similar studies, tests use various scenarios
ranging from local tests through the execution of
code by console, execution from web applications
with PHP[18], to mobile applications as evidenced
in[19]. For our case, we sent data from a mobile
application developed with Xamarin Forms.

In the testing process, it is important to
characterize the input. In Table I we show the size
of the information contained by the objects that
store information from the surveys. The larger the
object the more complex storage structure is. We
proposed to calculate the execution time of both
insertion and query scenarios.

To perform the tests, we decided to use the
structure of the object that has all the survey
information as data for insertion and query
operations. This object resides in the client
application, for our case a mobile application. Out
of the 32 available survey type forms, we selected
the two most complex ones: Residential Form and
Economic Form. Each form gave data matrices of
701400 and 136200 values respectively. Table 1
summarizes the selected instruments in detail.

We proposed three scenarios to measure
running times during the test execution in MySQL
and MongoDB: 1. Execution, insertion and query
with 30 records; 2. Execution, insertion and query
with 300 records; and 3. Execution, insertion and
query with 600 records. We executed the tree
scenarios for the prioritized survey forms
(Residential and Economic). In each scenario, we took
the average time as a measure for each storage
engine. Finally, we used this time to do the analysis
and draw conclusions.

Also, we defined five search criteria for each
type of survey and obtained the response time in
the two storage engines to the insertion and query
processing. The criteria are indicated below:

166 |

Economic: 1. Query geographical coordinates,
respondent name, type of housing, number of
residents of the house for each survey; 2. Query
the surveys where the house has electricity service
by public network (interconnection), sewerage and
municipal or rural aqueduct; 3. Obtain the surveys
where there is consumption of firewood or charcoal
in the house, and query the cost of charcoal,
firewood purchased and self-appropriate for each;
4. Query amount, name of the respondent, type
and power of bulbs specified in each survey where
the quantity is greater than zero and sort them
ascending order by the quantity field and; 5. Query
the equipment that has energy consumption in all
the surveys, the quantity of each and order them
ascending by the amount.

Residential: 1. Query geographic coordinates,
distance in km to the municipal seat and the type
of vehicle that you use mainly; 2. Query the surveys
where the electric power is obtained connected to
the public network (interconnection), the form of
ownership of the own property and if they have
property titles or registration documents in public
instruments; 3. Obtain the road type status used
to get from the farm to the municipal seat for each
survey; 4. From the surveys that get the electric
power by interconnection, consult if they have a
meter, how many days a week have electric power
service, order by number of days per week of
service ascending and; 5. Get the current average
cost of one hectare and the current average lease
cost of one hectare for all surveys, show the cost
of leasing upwards and present the average cost
for both cases, excluding costs less than 1000. Table
IV shows the times obtained within the query
process in the storage engines.

The test execution environment had the
following specification: a virtual machine over
VirtualBox 6 with Centos 7.0 operating system,
with 16 GB of RAM, Intel (R) Xeon (R) CPU E5-

REVISTA INGENIERIA, MATEMATICAS Y CIENCIAS DE LA INFORMACION

2603 v4 @ 1.70 GHz of 6 cores, with a 256 GB hard
disk and 10000 Mb / s Ethernet network adapter.
Additional installed software was Apache Tomcat
9, MySQL 5.7 under the InnoDB storage mecha-
nism and MongoDB 4.0.6. The mobile device to
send the survey was: Samsung Galaxy Tab A 10.1
inches with Android 6 operating system (Marsh-
mallow) and 2 GB RAM. In the process of sending
information, the surveys that were already entered
in the database were taken and placed again on
the mobile device for each scenario, and from there
we sent the information through a local network
of data (LAN).

III. REsuLTs
3.1 Data from execution

In Table II, we present the results for each of
the proposed scenarios in relation to the execution
and insertion times on the data of the Economic-
type survey form. During the test, we used an
object composed of 34 questions and approximately
227 responses per survey (see Table I).

In Table III, we present the results for each of
the proposed scenarios in relation to execution and
insertion times on the data of the Residential-type
survey form. In this test, we used an object
composed of 90 questions and approximately 1,169
responses per survey (see Table I).

In Table IV, we present the results for each of
the proposed scenarios in relation to the queries
defined for each survey form.

3.2 Data Analysis
During the execution of the scenarios to obtain

the data of the execution and insertion processes
of the Economic-type surveys, we observed

Table I. Selected instruments for the performance test.

Instruments - Number of Number of Min. Max. Average Average
. . Number
Survey Type questions per possible answers of survevs Survey size Surveysize Surveysize Survey size
Form survey per survey y (Bytes) (Bytes) (Bytes) (kB)
Residential 90 1169 158783 207462 183123 179
Economic 34 227 20707 49340 35024 34

Rev. Ingenieria, Matemiticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

COMPARATIVE PERFORMANCE ANALYSIS BETWEEN MYSAL AND MONGODB DATA STORAGE ENGINES TO... 167
ROGER CALDERON MORENQ, EDWIN DAVID RUBIANO BACCA, LUIS ALBERTO PARRA LINARES

Table Il. Execution and insertion time for economic-type survey.

Execution time (s) Insertion time (s)

Samples
MySQL MongoDB MySQL MongoDB
30 0.79 0.34 0.013 0.0058
300 35 1.52 0.012 0.0051
600 6.44 2.72 0.011 0.0045

Table lll. Execution and insertion time for residentialtype survey.

Execution time (s) Insertion time (s)

Samples MySQL MongoDB MySQL Mgl;g"
30 2.55 1.42 0.043 0.023
300 11.8 6.68 0.039 0.022
600 23.15 12.33 0.038 0.02
Table IV. Query times.
Economic-type Residential-type Survey
Query Survey time (s) time (s)
MySQL MongoDB MySQL MongoDB
Query 1 1.92 1.28 5.63 3.72
Query 2 2.03 1.13 548 2.64
Query 3 2.16 1.61 547 3.64
Query 4 2.07 1.29 5.46 3.77
Query 5 2.27 1.42 575 6.18

significant differences in the two selected engines.
MongoDB showed better times. In Fig. 1 we show
the comparative results between the two storage
engines. This result is consistent with the validation
process of primary and foreign keys that are
included in the table in which the information is
inserted, actions that are not carried out within
MongoDB. Hence the speedup of the process
compared to MySQL.

Regarding the times obtained in the insertion
process, we obtained an average improvement of
the three scenarios of up to 57.33%, which can be
observed in Fig. 2. The improvement in the time
of insertion can also be explained due to the
integrity validations reference and the process of
storing the information in binary format for the
BLOB-type field of MySQL, while in MongoDB the
document is not stored in a specific field, on the

Rev. Ingenieria, Matemdticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

Time (s)

6,44

6

5

4

35

3

2

1 0,79

0,34

0 r +

2,72
1,52
MySQL MongoDB
Storage Engine
®30 samples
® 300 samples
¥ 600 Samples

Fig. 1. Execution time comparison between MySQL and MongoDB
for 30, 300 and 600 samples - Economic-type Survey Form.

0,014

0,013

0,012
0,01

Z0,008

0,0058

0,0051
‘

MySQL MongoDB
Storage Engine

0,006

0,004

0,002

" 30 samples
¥ 300 samples
¥ 600 samples

Fig. 2. Insertion time comparison between MySQAL and MongoDB
for 30, 300 and 600 samples - Economic-type Survey Form.

contrary, it is stored as a complete document in
hard disk that belongs to a collection in BSON
format action that improves the performance with
respect to MySQL.

In Fig. 3 and Fig.4, we present the information
related to the execution of the scenarios and
insertion processes of the Residential-type surveys.
As one can see, there is an improvement in the
performance of operations in MongoDB of up to
45% compared to the performance of MySQL.

168 REVISTA INGENIERIA, MATEMATICAS Y CIENCIAS DE LA INFORMACION

0,05

0,043

0,04

0,03

Time (s)

0,02

0,01

MongoDB

Storage Engine
30 samples
300 samples
¥ 600 samples

Fig. 3. Execution time comparison between MySQAL and MongoDB
for 30, 300 and B0OO samples - Residential-type Survey Form.

23,15

20

w

=)

MongoDB

Storage Engine
30 samples
300 samples
600 samples
Fig. 4. Insertion time comparison between MySQL and MongoDB
for 30, 300 and 600 samples - Residential-type Survey Form.

In Fig. 5 we present a comparison of the speedup
for both the Economic- and Residential-type Survey
Forms. The speedup definition is as follows:
speedup= (exe_time_MySQL - exe_time_Mongo
DB)/exe_time_MySQL. We did the same calcu-
lation for the results of each sample size. As result,
we observed a speed up above 50% on average
for the Economic-type Survey Form and a speed up
above 40% on average for the Residential-type
Survey Form.

70,0%

60,0% 57.0% 56,6% 57.8%
& . —

50,0% 26,7%

Speed up

30,0%
20,0%
10,0%
00% - T
o 100 200 300 400 500 600 700
Samples
== Economics-type Form
=& Residential-type Form

Fig. 5. Speedup comparison for the execution times in both
types of Survey Forms.

In the process of executing the scenarios to
obtain the data of the query times related to the
Economic-type Survey form, MongoDB showed an
improvement of the times of approximately 35.2%
with respect to MySQL (see Fig. 6).

Regarding the time obtained for the Residential-
type Survey Form, we evidenced an improvement
of 37.4%, particularly in queries 1, 2, 3 and 4 (see
Fig. 7). These improvements can be explained by
the efficiency of MongoDB’s Query language. On
the other hand, in query 5 of the Residential-type
Survey Form, we observed an improvement of the
performance of MySQL with respect to MongoDB,
a situation that can be explained by the large
amount of data that was generated in the process
of grouping and ordering operations, which are
made in main memory and exceeds 100 MB. This
situation generates an error in MongoDB. To solve
this error we used the function allowDiskUse[6], this
function is activated when the data to group
exceeds 100 MB of main memory, and is supported
by a temporary directory on the hard disk to per-
form such operations. Accessing a secondary
storage medium generates longer response times
in queries, actions that are also presented in
MySQL, which in this case offers better response
times with respect to MongoDB. The previous
difficulty was also evidenced in the study carried

Rev. Ingenieria, Matemiticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

COMPARATIVE PERFORMANCE ANALYSIS BETWEEN MYSAL AND MONGODB DATA STORAGE ENGINES TO... 169
ROGER CALDERON MORENQ, EDWIN DAVID RUBIANO BACCA, LUIS ALBERTO PARRA LINARES

1,29
2,07
’g 1,61
Query 3
a 2,16
1
a2 | —
Query 1 = 192
0 0,5 1 15 2 25 3
Time (s)
= MongoDB
=mysaL

Fig. B. Query Time Comparison - Economics-type Survey Form.

 MongoDB
=MysaL

Fig. 7. Query Time Comparison - Residentialtype Survey Form.

out by[12]. It is important to remember that in all
three scenarios, we are searching for files with an
average size of 179 KB, where each file contains 90
questions and approximately 1169 survey res-
ponses (see Table I).

In Fig. 8 we present a comparison of the speedup
for each query in both the Economic- and Residential-
type Survey Forms. The speedup definition is as
follows: speedup = (query_time_ MySQL -
query_time_MongoDB) / query_time_MySQL. In
general, there is a gain in the processing times for
most of the queries executed in MongoDB. The
exception comes in Query 5 for the Residential-type
Survey Form. In this case we observed a negative
performance (-7.5%) of MongoDB in comparison
to the same query ran in MySQL.

Rev. Ingenieria, Matemdticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

7,5
% 37,4%
Query 4 37,7%
i buerys 33,5%

51,8%
Query2 44,3%

Query 1

-20,0% -10,0% 0,0% 10,0% 20,0% 300% 40,0% 50,0% 60,0%
Time (s)
B Residential-type Form

® Economics-type Form

Fig. 8. Speedup Query Time Comparison for Residential- and
Economic-type Survey Form.

IV. CoNcLUSIONS

Dynamic data model implementation on docu-
mentary databases[20] such as MongoDB allows
software developers to store and query directly
without performing additional tasks to disaggregate
information. This fact benefits software developers
by avoiding the use of ORM, that is, developers can
remove an additional software layer within the
persistence layer of the applications” data.

In the processes of execution, insertion and
query of dynamic information on MongoDB, we
evidenced an improvement in the response times
for these three criteria in the three test scenarios.
In addition, the processing times between the two
engines are very similar for queries that require
large amounts of data (>100 MB) on grouping and
ordering operations. This result is consistent with
the observation by[12] and[21].

MongoDB database is an alternative for
information storage, not only for its flexibility to
store various information structures, but also, it
offers support for ACID-type transactions since
version 4.0. The lack of this feature was considered
by many to be a disadvantage compared to
relational-type engines.

Itis evident that MongoDB is a stable and robust
storage engine, and it can be proposed for future
software development projects. It allows flexibility

170 REVISTA INGENIERIA, MATEMATICAS Y CIENCIAS DE LA INFORMACION

in the structure of storage models at both logical
and physical levels. This feature will diminish the
negative effects due to the software evolution that
have the applications in general. It is a well-known
fact that software developers must mitigate these
risks as suggested by[3].

A CKNOWLEDGMENT

This work was partially funded by the General
Directorate of Research of the Universidad de los
Llanos with the project C02F01006-2016. The
authors also thank the Observatory of the
Territory of the Universidad de los Llanos for their
collaboration, advice and logistical support that
allowed the development of this research.

REFERENCES

[1] Observatorio del Territorio, Planes de energizacion
rural sostenible. 2019. http:/ /observatorio.unilla
nos.edu.co/pers/.

[2] R.Calderén-Moreno & D. Arenas-Seleey, Mapeo
de objetos a través de un motor de datos NOSQL,
caso de estudio: framework para desarrollo de apli-
caciones web, Ingenieria Investigacién Y Desarro-
llo, pags. 61-71. 2017.

[3] S.Roger, Ingenieria de Software un enfoque practico.
Pressman, Mexico DF: McGraw Hill, 2006. p. 6-16.

[4] M. Callejas Cuervo, D. I. Pehalosa Parra y A. C.
Alarcon Aldana, Evaluacion y analisis de rendi-
miento de los frameworks de persistencia Hibernate

y Eclipselink. Manizales: 2011, Ventana Informa-
tica, Vol. 24, pags. 9-23.

[5] M. Fowler, Martin y Sadalage,]J. Pramodkumar,
NoSQL Distilled, A Brief Guide to the Emerging
World of Polyglote. s.1: Addison Wesley, 2013.

[6] MongoDB-Inc. Definition. db.collection.aggregate
(pipeline, options). 2018. https://docs.mon
godb.com/manual/reference/method/db.collec
tion.aggregate/index.html.

[7]1 Solid IT. DB-Engines Ranking of Document Stores.
Document Stores. 2019. https:/ / db-engines.com/
en/ranking/document+store.

[8] A Comparative Study: MongoDB vs MySQL. Soni,
Sushil y Ambavane, Mayuresh. 2017, International
Journal of Scientific & Engineering Research, Vol.
8, pags. 120-123.

[91 A Comparative Study: MongoDB vs. MySQL,
Proceedings of the International Conference on

Information Technologies. OLAH, Andrada.
Bulgaria: 2018, Proceedings of the International
Conference on Information Technologies (InfoTech-
2018), p. 20-21.

[10] Comparative analysis of NoSQL (MongoDB) with
MySQL Database. Kumar, Lokesh. 2015, Interna-
tional Journal of modern Trends in Engineering
and Research ISSN(Online) 2349-9745. 2015.

[11] F. Arboleda, F.J. Moreno, Una comparacién de ren-
dimiento entre ORACLE y MONGODB. 1, 2016,
Ciencia e Ingenierfa Neogranadina, Vol. 26, pags.
109-129.

[12] R. Sanchez-de-Madariaga, A. Mufioz, A. L. Castro,
O. Moreno & M. Pascual, Executing Complexity-
Increasing Queries in Relational (MySQL) and
NoSQL (MongoDB and EXist) Size-Growing ISO/
EN 13606 Standardized EHR Databases. 2018. 133,
19 de 03 de 2018, Journal of visualized experiments:
JoVE do0i:10.3791/57439.

[13] Oracle. Reference Manual. What is MySQL?. 2017.
https:/ /dev.mysql.com/doc/refman/8.0/en/
what-is-mysql.html.

[14] Supported Storage Engines. Alternative Storage
Engines. 2017. https://dev.mysql.com/doc/
refman/5.5/en/storage-engines.html.

[15] MongoDB-Inc. Documentation. Introduction to
MongoDB. 2017. https:/ /docs.mongodb.com/ma-
nual/introduction/.

[16] JSON and BSON. 2017. https:/ /www.mongodb.
com/json-and-bson?lang=es-es.

[17] Visién de Conjunto. Comparacién entre MongoDB
y MySQL. 2017. https:/ /www.mongodb.com/
compare/mongodb-mysql?lang=es-es.

[18] A Comparative Study Between the Capabilities of
MySQI Vs. MongoDB as a Back-End for an Online
Platform. Cornelia Gy?rodiy Ioana Andrada Olah.
2016, International Journal of Advanced Computer
Science and Applications, pags. 73-78.

[19] M. M. Patil, A. Hanni, C. H. Tejeshwar and P. Patil,
A qualitative analysis of the performance of
MongoDB vs MySQL database based on insertion
and retriewal operations using a web/android
application to explore load balancing — Sharding
in MongoDB and its advantages. 2017. Interna-
tional Conference on I-SMAC (loT in Social, Mobile,
Analytics and Cloud) (I-SMAC) doi: 10.1109/1-
SMAC.2017.8058365, p. 325-330.

[20] M. Fowler y P. Sadalage, NoSQL Distilled, A Brief
Guide to the Emerging World of Polyglote, Addison
Wesley, 2013.

[21] Y. Abrahami, Scaling to 100M: MySQL is a Better
NoSQL. 2018. https://www.wix.engineering/
blog/scaling-to-100m-mysql-is-a-better-nosql.

Rev. Ingenieria, Matemiticas y Ciencias de la Informacion
Vol. 11 / Num. 22 / julio-diciembre de 2024; 163-170

