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ABSTRACT

In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines
relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are
mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize
the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit
solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by
determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated
into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical
modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time
scales in the general fields of engineering.
KKKKKeywordseywordseywordseywordseywords: Transport phenomena, limit solutions and limit operations, spatial and temporal scales, analytical solutions.

RESUMEN

En los cursos de ingeniería el campo de los fenómenos de transporte es de gran importancia y se encuentra en varias
disciplinas relacionadas con la mecánica de fluidos, transferencia de calor y masa. En estas disciplinas, los problemas
que implican estos fenómenos son matematicamente formulados y las soluciones analíticas son obtenidas como sea
posible. El objetivo de este trabajo es resaltar la posibilidad de ampliar los aspectos de la enseñanza-aprendizaje en
esta área mediante un método basado en escalas de tiempo y soluciones límite. Por lo tanto, los aspectos relativos a la
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fenomenología surgen naturalmente durante la definición de las escalas y/o mediante la determinación de las solucio-
nes límite. Aspectos relativos a la fenomenología de los problemas de límite se incorporan fácilmente en el desarrollo
propuesto, lo que contribuye significativamente a la comprensión de la física inherentes a la modelización matemática
de cada caso límite estudiado. Por último, el estudio tiene como objetivo difundir el uso de las soluciones de límite y de
las escalas de tiempo en los campos generales de ingeniería.
PPPPPalabras clavealabras clavealabras clavealabras clavealabras clave: Fenómeno del transporte, soluciones límite y las operaciones limite, las escalas espaciales y tempo-
rales, las soluciones analíticas.

I. INTRODUCCIÓN

The transport phenomena comprises a broad area
of science and integrate the curriculum of various
courses of engineering such as: Chemical Enginee-
ring, Mechanical Engineering, Electrical Engineering,
Industrial Engineering, etc. The formulation of
problems in this area follows usually the Eulerian
approach [1] involving mathematical models based
on differential equations that express the dependen-
cy of variables such as temperature, concentration
and speed in the variables spatial and/or temporal
variable. Furthermore, analytical solutions of
different problems in this area are liable to be reduced
to solutions of particular cases by a method based
on limit operations used initially by[2] and detailed
in [3]. The method used [2], [3], [4] provides that
from a general solution to a given problem, limiting
solutions are obtained and it is important to note
that in many cases this is not a trivial task [2], [3].
Thus, the limiting solutions are obtained without the
need for resolving again the equations of the reduced
model. Simultaneously, this allows a deepening of
physics at the problem through the establishment of
limit conditions and analysis of the limit solutions
obtained. Another important aspect along with the
limit solutions that has been systematically ignored
in different undergraduate textbooks of Transport
Phenomena is the question of definition of scales in
the problem formulation. Once properly established,
the spatial and temporal scales assist the understan-
ding of the involved phenomena and may also
facilitate aspects of teaching and learning in the field
of Transport Phenomena [5].

  This work demonstrates that the use of scales
and limit solutions allows to expand the teaching
aspects of Transport Phenomena, particularly in the
understanding at the phenomenology [5], [6]. In
this sense, the paper is organized in the following
way: Section 2 presents as a case study «Heat
Conduction in a Flat Plate» and the solutions of
the literature for the chosen models are presented.
In the Section 3 the scales of time and space for the

case study are defined. Based on these scales, the
physical meaning of dimensionless groups present
in the phenomenon are given. In section 4, taking
as basis the method of obtaining limit solutions
detailed in [3], limit solutions are obtained and the
results interpreted physically. Finally, in section 5,
we report the findings, and, issues related to
education in engineering are emphasized.

II.   CASE STUDY - HEAT CONDUCTION

ON A FLAT PLATE

To illustrate the use of limit solutions and time
scales in engineering teaching, it is proposed as a
case study the «Heat Conduction in a Flat Plate.»
The assumptions, the governing equation and the
initial condition for this problem are presented in
the following.

Assumptions: The board is rectangular and
infinite in length and width; the initial temperature
of the plate is uniform; heat transfer occurs by both
sides; physical properties are uniform and constant.

Governing equation

                          (1)

Where:

T is the temperature, (K);
α is the thermal diffusivity of the plate, (m2/s);
t is the time, (s);
x is the position relative to the center of the

plate, (m).

Initial Condition:

t= 0, -L < x < + L: T = T0         (2)

Where,
T0 is the initial temperature of the plate, (K);
L is the half-thickness of the plate, (m).
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The governing equation is known as the
diffusion equation. Determining solutions to this
equation means obtaining functions that relate the
temperature as a function of position and time.
These solutions are achieved from the establish-
ment of boundary conditions and knowledge of
the physical meaning of the boundary conditions
imposed [7]. In this case study boundary condi-
tions of the third and first type will be chosen with
the models called "Model I" and "Model II",
respectively. These boundary conditions are
presented respectively below.

Model I -Boundary Conditions:

Where:
h is the heat transfer coefficient, (m/s);
Ts in this model is the temperature of the

heating/cooling fluid, (K).

Model II - Boundary Conditions:

Where:
Ts in this model is the surface temperature of

the plate, (K).
Defining now the following dimensionless
variables:

where "Fo" is the Fourier Number, the Eqs. (1)-
(4) are rewritten in the form:

Where "Bi" is the Biot Number, expressed as:

The Biot number represents the ratio between
the internal thermal resistance to conduction in a
solid and the surface resistance to convection heat
transfer [8]. In equations (12) and (13) it is also
assumed that:

h1= h2= h                   (15)

In terms of dimensionless variables, the
boundary conditions of the Model II, Equations
(5) and (6) are rewritten as:

The solution of the Model I (Eqs. 10-13) can be
found for instance in [9] or [10]:

Where the "βns" are the positive roots of:

β tan (β)=Bi        (19)

For the Model II (Eqs. 10, 11, 16, 17), the solution
can be found, for example, in [11] or [12]:

III. SPATIAL AND TEMPORAL SCALES

In order to emphasize the importance of scales
in the physical understanding of problems in
Transport Phenomena and therefore in Engineering
teaching, the following scales are defined for the
case study:
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(a) Spatial scale:

Lx=L= Spatial scale in the x direction

(b)Time Scales:

 Time scale for propagation of the

conductive effects to the distance Lx inside the
plate.

 Time scale for the heating or cooling

of the plate surface by convection between the fluid
and the plate.

As mentioned, setting up the scales, the physical
meaning of dimensionless groups present on a par-
ticular problem arise naturally. Thus,

Bi= time scale for propagation of the conduc-
tive effects to a distance L within the plate/time
scale for the heating or cooling of the plate surface
by convection.

    

Fo= time/time scale for propagation of the
conductive effects to a distance L within the plate.

Note that the use of scales allows an alternative
interpretation for the Biot number, in relation to
usual interpretation [8], based in the concept of
thermal resistance.

The solutions for Models I and II (Equations
18-20) are rewritten in terms of the previous scales
as:

Model I:

Model II:

In the solution represented by the Eq. (25), the
scales need to be finite and nonzero. For example,
it is noted by Eq. (22), that tα needs to be finite
and non-zero to keep as a scale in the solution.
If tα = 0 the conductive phenomenon occurs
instantaneously; and if tα →  ∞  the phenomenon
of heat conduction to a distance L inside the plate
does not occur in a finite time. So, in both of these
cases, tα cannot serve to scale t in the solution.

IV. DETERMINATION

OF THE LIMIT SOLUTIONS

In this section, based on the method for
determining limiting solutions developed in [2] and
detailed in [3] and considering the scales defined
in section 3, the limiting solutions of Model I
(section 2) are determined. In the process, the
physical aspects of the problem are explored which
facilitates the understanding and teaching of
phenomenology.

A. Limit Solution for the Model I when Bi →→→→→ ∞ ∞ ∞ ∞ ∞

In this case, as can be interpreted from the Biot
number based on scales, (Eq. 21), there are two
possibilities for Bi  → ∞: (i) tα = finite and th → 0,
or (ii) tα → ∞ and th = finite or zero; but under
section 3, only (i) allows tα be maintained as a scale.
Then, this is the first limiting case considered.

For Bi  → ∞, the root´s equation (19) takes the
form:

    

(26)

Note that when applying limBi→∞  T* (x*, t*) in
Eq. (18), indeterminacies of the type (∞/∞) appears.
The "algebraic reconstruction" and the use of the
root´s equation, is the procedure to raise this indeter-
minacy as described in [3]. Starting with the
"algebraic reconstruction" of Equation (18), we have:
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   (27)

It is observed that even after of the algebraic
reconstruction, the form given by Eq. (27) still
retains an indetermination of the type (∞ × 0) in
the denominator of each term in the series. To raise
this indetermination, the root's equation, Eq. (19),
is substituted in Eq. (27), obtaining:

T* (x*, t* )=

(28)

Applying the operation lim Bi→∞ in the Eq. (28),
with the use of Equation (26), results:

It is verified that the limit solution given by
Eq. (29) corresponds exactly to the solution of
the Model II expressed by Eq. (20). This is the
result physically expected, since for Bi → ∞ with
tα = finite and th → 0, the heat transfer by
convection at the surface of the plate is infinitely
faster than conduction heat transfer in its interior,
thus making the surface to remain at the constant
temperature of the fluid. This situation is equivalent
to the boundary conditions of the Model I.

2) Bi → ∞→ ∞→ ∞→ ∞→ ∞ with tα α α α α →→→→→∞∞∞∞∞ and  th = finite or null

In establishing these limit conditions it is found
that the Fourier number becomes null; then it
should not be used tα as a scale for t. Thus, the
solution is reconstructed to incorporate this change,
noting that:

Where was done: 

In this case, from the root's equation, Eq. (26),
we have:

Where one can conclude that for finite "n", is
required that γn=0

Rewriting the solution of the Model I in the form
given by equation (27) in terms of γn, and th, we have:

Substituting Eq. (30) in the last expression and
applying the limits for this case, we have:

In  x = ± L

= 0 

 (32)

or,

For  -L < x < + L, an indetermination of the kind
(∞ × 0) arises in the denominator of the series of
Eq. (32). In this case, applying L'Hospital, and
summing the resulting series, we obtain:

The results expressed by Eqs. (33) and (34)
correspond exactly to those expected when the
propagation time of the conductive effects at a
distance L is infinitely greater than the time for
convective heat transfer on the plate surface; in
this situation, for t > 0, the surface of the plate is in
the temperature of the fluid, while the interior
remains at the initial temperature.

B. Limit Solution for the Model I when Bi →→→→→ 0

In this case, according to the interpretation of the
Biot number based on scales (Eq. 21), there are
two possibilities for Bi → 0: (i) tα finite and th→ ∞;
(ii) tα →→→→→0 and th finite; but as mentioned in section 3,
only (i) allows that tα be maintained as the time scale
in question. We analyze these cases  in the following.
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1) Bi → 0 with tα finite and th→ ∞

For Bi → 0 the root's equation, Eq. (19) takes
the following form:

                                β1= 0

(35)

Where β1=0  it is a double root.

When applying Bi → 0  in Eq. (18), all terms of
the sum result null, except the first term which is
undetermined for "β1=0" , then:

The procedure for removal of such indetermina-
tion is the use of initial condition [2], [3], [4] which
in this case is given by Eq. (11):

This result is physically expected since to Bi → 0
with tα finite, and th → ∞ it means that heat transfer
by convection at the plate surface occurs at a time
infinitely greater than the heat conduction inside
the plate, and since the initial temperature is
uniform, the plate always remains at the same
condition.

It is considered hereinafter, the second
possibility.

2) Bi → 0   with tα → 0 and  th =  finite or zero.

In establishing these limit conditions the Fourier
number becomes infinite; one should then use the

scale th as a t scale. Thus, the solution it is
reconstructed to incorporate this change, observing
that:

   

Where:  

In parallel, the root´s equation (Eq. 19) is written

as , therefore:

Applying L'Hospital obtains a single root: γ1=1.

Substituting this result in the solution of Model
I expressed by Eq. (31), we obtain:

The Eq. (41) corresponds exactly to the solution
of a lumped model for heat transfer in a flat plate
of thickness "2L". This is the expected physical
situation in which case the conduction into the plate
is infinitely faster than the convection at the surface.

CONCLUSIONS

The combination of techniques for establishing
scales and obtain limit solutions, allowed elucidate
various aspects of the phenomenology of the case
study discussed in section 2. A physical unders-
tanding is essential in the teaching of Transport
Phenomena, which is part of the "curriculum" of
several Engineering courses. Through the develop-
ment proposed in this work and in a previous work
[3] it is expected that the teaching of this matter
can be facilitated. The proposed method of "Scales
& Limit Solutions" is quite general for use in other
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areas of Education in Engineering and proved to
be very suitable for obtaining solutions of problems
of Mathematical Physics [3], [4]. The techniques
used in the rising of indeterminacies were also
established, which are essentials for obtaining the
limit solutions. It is hoped that this work will help
in disseminate the mentioned method and the
concepts related to it.

Experience teaching in engineering courses
allows us to put that this is the case of the concept
of limit. The case study presented and the
determination of solutions point to another
opportunity to develop this concept over the
course of engineering, besides emphasizing its
relevance.

An interesting feature in obtaining limit
solutions is that indeterminacies may be viewed
as "mathematical blocks"; their correct identifi-
cation and removal is the "path" to obtain the
solution. Once established the limit values of the
parameters, this "path" comes naturally [3].

Finally, it is proposed that the techniques at limit
operations used in this article, may under a gene-
ral perspective, disseminate in solving other
problems in the teaching of Engineering, for
indeed, there is no restriction about the implemen-
tation of the method in other areas.
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